Compressed Air Energy Storage CAES Steve Bauer Sandia National Laboratories 6/23/21 WI PSC/DOE ENERGY STORAGE WEBINAR Fig. 1. CAES system configurations [8]. #### **COMPRESSION CYCLES** ## Container Options - Salt caverns - Mined openings - Existing/abandoned - Lined - Water curtains - Reservoirs - Natural Gas - Aquifers - Man made containers Huntorf, Germany, 290 MW 1978 McIntosh, Alabama 110 MW 1991 Depleted reservoirs are proven gas reservoirs that are easy to develop and operate due to existing infrastructure Aquifers are similar in geology to depleted reservoirs, but must be proven to trap gas Designed/engineered buried reinforced concrete vessels in association with solar generation Munoz-Ramos, et al, SAND2012-5912 #### **EXISTING** Table 1 Key technical characteristics of current conventional CAES facilities. | CAES Facility | Operator | Year
Operational | Deliverable Power
[MW] | Discharge Time
[hr] | Efficiency
[%] | Pressure
[bar] | Cavern Type | |----------------------|-----------------------------------|---------------------|---------------------------|------------------------|-------------------|-------------------|-----------------------------------| | Huntorf,
Germany | Uniper Kraftweke
GmbH | 1978 | 290 | 2 | 29 | 48–66 | Two solution-mined salt caverns | | McIntosh, AL,
USA | Power South Energy
Cooperative | 1991 | 110 | 26 | 36 | <76 | Single solution-mined salt cavern | ### **PLANNED** | Table 2 Major recent CA | ES projects. | | ,, | • | | | | | | |---|---|--|------------------|--------------|--------------------|-------------------------------------|---------------|-------------------|-----------| | Project Name Locati
Pressure [bar] Storage M | | ES Technology Project Purpo | se Project Statu | is Years | s Active | Power [MW] Ca | apacity [MWh] | Efficiency [%] Ai | r Storage | | TICC-500 | Tsinghua
University,
China | Adiabatic, sensible heat store | Demonstration | Active | 2014 –
present | 0.5 | 0.5 | 33 | 30–110 | | Chinese Academy of
Sciences, CAES
demonstration plant | Bijie City, Guizhou,
China | Adiabatic, sensible heat store | Demonstration | Active | 2017 –
present | 2.8 (charge)
10
(discharge) | 40 | 62.3 | 70 | | Pilot scale
demonstration of AA-
CAES | Gotthard base
tunnel, Biasca,
Switzerland | Adiabatic, sensible heat/combined sensible-latent heat store | Demonstration | Active | 2017 –
present | 0.7 | - | 63–74 | 8 | | Zhongyan Jintan CAES | Jintan, Jiangsu,
China | Adiabatic, sensible heat store | Commercial | Commissioned | 2017 –
present | 50–60 | 200–300 | - | - | | Goderich A-CAES
facility | Goderich, Ontario,
Canada | Adiabatic, cavern flooded and
hydrostatic pressure used for
isobaric storage | Commercial | Active | 2019 –
present | 2.2 (charge)
1.75
(discharge) | 7 | >60 | - | | Apex CAES Bethel
Energy Centre | Tennessee Colony,
Texas,
USA | Conventional diabatic, gas fuelled | Commercial | Commissioned | 2019 –
present | 324–487 | 16,000 | - | - | | Feicheng A-CAES | Feicheng,
Shandong, China | Adiabatic, sensible heat store | Commercial | Active | 2019 –
present | 1250
(expected) | 7500 | 67 | - | | PG&E Advanced
Underground CAES | San Joaquin
County, California,
USA | Conventional diabatic, gas fuelled | Commercial | Commissioned | 2020 –
present | 300
(expected) | - | - | - | | Angas A-CAES facility | Strathalbyn, South
Australia,
Australia | Adiabatic, cavern flooded and
hydrostatic pressure used for
isobaric storage | Commercial | Commissioned | 2022
(expected) | 5 | 10 | >60 | - | ## CAES Geologic Potential in the US ## Thanks! • Questions?